Cho \(a,b,c\ge2\). CMR: \(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\ge\frac{\sqrt{97}}{2}\)
CMR ĐK a+b+b\(\ge\)2
\(\sqrt{a^2+\frac{1}{b}}+\sqrt{b^2+\frac{1}{c}}+\sqrt{c^2+\frac{1}{a}}\ge\frac{\sqrt{97}}{2}\)
\(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}\sqrt{c^2+a^2}=\sqrt{2011}cmr\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{1}{2}\sqrt{\frac{2011}{2}}\)
Cho a b c dương thỏa mãn a+b+c=3 CMR
\(\frac{a}{\sqrt{b+1}}+\frac{b}{\sqrt{c+1}}+\frac{c}{\sqrt{a+1}}\ge\frac{3\sqrt{2}}{2}\)
với a,b,c dương thỏa
\(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2015}\\CMR:\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{1}{2}\sqrt{\frac{2015}{2}}\)
Cho a,b,c duong thoa :\(a+b+c\le2\)
Chung minh: \(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\ge\frac{\sqrt{97}}{2}\)
Giả sử a;b;c là dộ dài 3 cạnh của 1 tam giác. CMR :
\(\frac{1}{\sqrt{ab+ca}}+\frac{1}{\sqrt{bc+ab}}+\frac{1}{\sqrt{ca+bc}}\ge\frac{1}{\sqrt{a^2+bc}}+\frac{1}{\sqrt{b^2+ca}}+\frac{1}{\sqrt{c^2+ab}}\)
cho a;b;c là các số thực dương thỏa mãn a+b+c=3.CMR:\(\sqrt{\frac{a}{3b^2+1}}+\sqrt{\frac{b}{3c^2+1}}+\sqrt{\frac{c}{3a^2+1}}\ge\frac{3}{2}\)
Cho 3 số dương a;b;c thỏa mãn: \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=1\)
CMR: \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{1}{2\sqrt{2}}\)