Ta có : \(\sqrt{a^2+b^2}\ge\frac{a+b}{\sqrt{2}}\)
\(\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)( bình phương 2 vế )
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow2a^2+2b^2-a^2-2ab-b^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra khi : \(a=b\)
Vậy ...