Giả sử ta có hình chữ nhật MNPQ nội tiếp tam giác ABC (\(M\in AB,N\in AC,P\in BC,Q\in BC\))
Kẻ đường cao AH (H thuộc BC)
Ta có : \(MQ\text{//}AH\Rightarrow\frac{BM}{AB}=\frac{MQ}{AH}\left(1\right)\) ; \(MN\text{//}BC\Rightarrow\frac{MN}{BC}=\frac{AM}{AB}\left(2\right)\)
Cộng (1) và (2) theo vế : \(\frac{MQ}{AH}+\frac{MN}{BC}=\frac{BM+MA}{AB}=\frac{AB}{AB}=1\)
Đặt \(x=\frac{MQ}{AH};y=\frac{MN}{BC}\Rightarrow x+y=1\) không đổi.
Ta có bất đẳng thức : \(xy\le\frac{\left(x+y\right)^2}{4}\) (Dễ dàng chứng minh bằng biến đổi tương đương)
Áp dụng vào : \(\frac{S_{MNPQ}}{S_{ABC}}=\frac{MN.MQ}{\frac{BC.AH}{2}}=2.\frac{MN}{BC}.\frac{MQ}{AH}=2xy\le2.\frac{\left(x+y\right)^2}{4}=2.\frac{1}{4}=\frac{1}{2}\)
\(\Rightarrow\frac{S_{MNPQ}}{S_{ABC}}\le\frac{1}{2}\Rightarrow S_{MNPQ}\le\frac{S_{ABC}}{2}\) (đpcm)