cho pt: \(x^2-2\left(m+1\right)x+m-4=0\)
a) Tìm m để pt có 2 nghiệm đối nhau
b) CMR: Pt luôn có 2 nghiệm phân biệt với mọi m
c) CMR biểu thức: \(x_1\left(1-x_2\right)+x_2\left(1-x_1\right)\)Không phụ thuộc vào m
e) xác định m để pt có 2 nghiệm phân biệt dương ?
cho \(x^2-2\left(m-1\right)x-2m=0\) (m tham số). CMR: PT luôn có 2 nghiệm phân biệt với mọi m. Gọi `x_1 ;x_2` là 2 nghiệm của PT, tìm tất cả giá trị m để \(x_1^2+x_1-x_2=5-2m\)
\(x^2-2\left(m-1\right)x+m-3=0\)
CMR pt (1) luôn có 2 nghiệm với \(\forall m\)
Cho PT : \(x^2-2\left(m-1\right)x-3-m=0\)
( m là tham số )
a, CMR : PT luôn có nghiệm với mọi giá trị của tham số m
b, Tìm giá trị của m để PT có 2 nghiệm \(x_{1,}x_2\)thỏa mãn \(\left(4x_1+1\right)\left(4x_2+1\right)=17\)
cho phương trình : \(x^2+\left(4m-1\right)x+2\left(m-4\right)=0\) (ẩn x)
a) CMR : phương trình luôn có 2 nghiệm phân biệt với mọi m
b) tìm m để pt có 2 nghiệm thỏa mãn : | x1 - x2 |= 17
\(x^2+2\left(m-2\right)x-2m+1=0\) \(\left(1\right)\)
CMR pt\(\left(1\right)\) luôn có 2 nghiệm phân biệt với \(\forall m\)
B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)
a. Tìm m để (1) có 2 nghiệm dương
b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyên
B2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)
a. Tìm m để (1) có 2 nghiệm trái dấu
b. Tìm m để nghiệm này bằng bình phương nghiệm kia
B3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)
a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)
b. Tìm m để A=\(x_1^2+x_2^2-3x_1x_2\)đạt GTLN
B4: Cho pt \(x^2+\left(2m+3\right)x+3m+11=0\). Tìm m để pt có 2 nghiệm \(x_1,x_2\ne0\)thỏa mãn \(|\frac{1}{x_1}-\frac{1}{x_2}|=\frac{1}{2}\)
B5: cho 2 đường thẳng \(\left(d_1\right):y=\left(m-1\right)x-m^2-m\)và \(\left(d_2\right):y=\left(m-2\right)x-m^2-2m+1\)
a. Xđ tọa độ giao điểm của \(d_1\)và \(d_2\)(điểm G)
b. cmr điểm G thuộc 1 đường thẳng cố định khi m thay đổi
B6: cho pt \(2x^2-4mx+2m^2-1=0\)(1)
a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)
b. tìm m để pt (1) có 2 nghiệm thỏa mãn \(2x_1^2+4mx_2+2m^2-1>0\)
B7: cho pt \(x^2-2mx-16+5m^2=0\)(1)
a. tìm m để (1) có nghiệm
b. gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm GTLN và GTNN của biểu thức A=\(x_1\left(5x_1+3x_2-17\right)+x_2\left(5x_2+3x_1-17\right)\)
\(x^2-2\left(m+1\right)x+m-4=0\)
c/m pt luôn có 2 nghiệm phân biệt x1, x2 và \(C=x_1\left(1-x_2\right)+x_2\left(1-x_1\right)\)ko phụ thuộc vào m
cho pt \(x^2-2\left(m+1\right)x+4m-m^2=0\)
a) CMR \(\forall m\) thì pt trên luôn có 2 nghiệm pb
b) gọi \(x_1,x_2\) là các nghiệm của pt trên
tìm MIN của \(A=\left|x_1-x_2\right|\)