x^3+y^3+z^3=3xyz
<=>x^3+y^3+z^3-3xyz=0
<=>(x+y+z).(x^2+y^2+z^2-xy-yz-zx)=0
<=>x^2+y^2+z^2-xy-yz-zx=0 (vì x,y,z > 0 nên x+y+z > 0)
<=>2x^2+2y^2+2z^2-2xy-2yz-2zx=0
<=>(x-y)^2+(y-z)^2+(z-x)^2=0
<=>x-y=0;y-z=0;z-x=0
<=>x=y=z (ĐPCM)
k mk nha
x^3+y^3+z^3=3xyz
<=>x^3+y^3+z^3-3xyz=0
<=>(x+y+z).(x^2+y^2+z^2-xy-yz-zx)=0
<=>x^2+y^2+z^2-xy-yz-zx=0 (vì x,y,z > 0 nên x+y+z > 0)
<=>2x^2+2y^2+2z^2-2xy-2yz-2zx=0
<=>(x-y)^2+(y-z)^2+(z-x)^2=0
<=>x-y=0;y-z=0;z-x=0
<=>x=y=z (ĐPCM)
k mk nha
CMR nếu tổng các số x, y, z không âm thì : x3+ y3+ z3 lớn hơn hoặc bằng 3xyz
cho các số x,y,z đôi một khác nhau thỏa mãn : x^3(y-z)+z^3(x-y)=y^3(z-x) . cmr x^3+ y^3+z^3=3xyz
giúp mình với , mình đang cần gấp
Cho các số x,y,z đôi một khác nhau thỏa mãn:x^3(y-z)+z^3(x-y)=y^3(z-x).
Cmr: x^3+y^3+z^3=3xyz
CMR
a) Nếu \(x^2+y^2+z^2=xy+yz+xz\)thì x=y=z
b) Nếu x+y+z=0 thì \(x^3+y^3+z^3=3xyz\)
1, Cho x,y ,z là các số dương đôi một khác nhau: : Cm :
A = x3 + y3 + z3 - 3xyz là số dương
2, Cho B= a4 + b4 + c4 - 2a2b2 - 2a2c2 - 2b2c2
a, Phân tích đa thức trên thành nhân tử
b, CM : Nếu a,b,c là số đô 3 cạnh của 1 tam giác thì B<0 .
3, Cho C = (x+y)(y+z)(z+x) +xyz
a; Phân tích đa thức thành nhân tử
b;CMR : Nếu x,y,z là các số nguyên và x+y+z chia hết cho 6 thì giá trị của đa thức C - xyz cũng chia hết cho 6
cho các số x,y,z đôi một thỏa mãn:x3(y-z)+y3(x-y)=y3(z-x)
CMR:x3+y3+z3=3xyz
Cho x + y + z = 0
Cmr x^3 + y^3 + z^3 = 3xyz
Giúp mình bài toán này nha các bạn. Mình đang cần , rất gấp
Mọi người giúp mình bài này nha: Cho x3+y3+z3=3xyz
Chứng minh rằng x+y+z=0 hoặc x=y=z
Cô mình có giải tới đoạn này rồi, nhưng mình không biết làm tiếp, giúp mình hoàn thành nốt nha
x3+y3+z3=3xyz
=>(x+y)3 = 3xy(x+y) + z3- 3xyz =0
=> (x+y)3 + z3 - 3xy(x+y+z) = 0
giúp mình mình tick đúng cho nha <3
tìm các số dương x , y ,z biết x + y +z = 3 , \(x^4+y^4+z^4=3xyz\)