Áp dụng bđt bunhiacopxki:
\(\left(x^2+y^2+z^2\right)\left(1^2+1^2+1^2\right)\ge\left(x.1+y.1+z.1\right)^2=\left(x+y+z\right)^2=1\)
\(\Rightarrow x^2+y^2+z^2\ge\frac{1}{1^2+1^2+1^2}=\frac{1}{3}\)
Dấu "=" xảy ra \(< =>\frac{x}{1}=\frac{y}{1}=\frac{z}{1}mà.x+y+z=1< =>x=y=z=\frac{1}{2}\)