Bà nhờ t mới làm chứ bài nhu thế này t thường không dám làm....
TH1 :
\(x\text{≡}1\left(mod3\right)\)
\(\Rightarrow x^2\text{≡}1^2\text{≡}1\left(mod3\right)\)
TH2 :
\(x\text{≡}2\left(mod3\right)\)
\(\Rightarrow x^2\text{≡}2^2\left(mod3\right)\)
\(\Rightarrow x^2\text{≡}4\left(mod3\right)\)
Mà \(4\text{≡}1\left(mod3\right)\)
\(\Leftrightarrow x^2\text{≡}1\left(mod3\right)\)
Vậy ...
Ta có: x không chia hết cho 3 => x có dạng 3k + 1 hoặc 3k + 2
TH1 :Khi x = 3k + 1 => x2 = (3k + 1)(3k + 1) = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1 chia 3 dư 1 => x2 = 1 (mod 3)
TH2: Khi x = 3k + 2 => x2 = (3k + 2)(3k + 2) = 9k2 + 6k + 4 = 9k2 + 6k + 3 + 1 = 3(3k2 + 2k + 1) + 1 => x2 = 1 (mod 3)
Từ cả 2 trường hợp => Nếu x không chia hết cho 3 thì x2 = 1 (mod 3)