Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

CMR: Nếu p và p^2+2 là số nguyên tố thì p^3+1 cũng là số nguyên tố

NGUYỄN THỊ THẢO VY
1 tháng 1 2022 lúc 15:53

bài này tui làm rồi mà quên rồi =)))

Khách vãng lai đã xóa
Yen Nhi
1 tháng 1 2022 lúc 21:34

Answer:

Mình nghĩ đề là  \(p^3+2\) mới đúng chứ nhỉ?

Ta nhận xét được: 

Mọi số nguyên tố lớn hơn 3 thì chia cho 3 đề có dạng: \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}}\left(k\inℕ^∗\right)\)

\(\orbr{\begin{cases}p=3k+1\Leftrightarrow p^2+2=9k^2+6k+3⋮3\\p=3k+2\Leftrightarrow p^2+2=9k^2-6k+6⋮3\end{cases}}\)

Vì p là số nguyên tố nên \(p\ge2\) khi đó trong cả hai trường hợp thì \(p^2+2>3\) và \(⋮3\)

\(\Rightarrow p^2+2\) là hợp số

\(\Rightarrow p^2+2\) là số nguyên tố khi \(p=3\) (Lúc này \(p^2+2=11\) là số nguyên tố)

\(\Rightarrow p^3+2=27+2=29\) là số nguyên tố

Vậy nếu \(p\) và \(p^2+2\) là số nguyên tố thì \(p^3+2\) cũng là số nguyên tố.

Khách vãng lai đã xóa

Các câu hỏi tương tự
Trần Văn Nghiệp
Xem chi tiết
Quay Cuồng
Xem chi tiết
Le Viet Tuan
Xem chi tiết
nguyen viet anh
Xem chi tiết
Ngô Gia Bảo
Xem chi tiết
Vương Nguyên
Xem chi tiết
Hà Quang Bình Nguyên
Xem chi tiết
Hà Quang Bình Nguyên
Xem chi tiết
Vương Nguyên
Xem chi tiết