Có : \(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)
\(\Leftrightarrow\frac{u+2}{v+3}=\frac{u-2}{v-3}\)
Theo tính chất dãy tỉ số , có :
\(\frac{u+2}{v+3}=\frac{u-2}{v-3}=\frac{u+2+u-2}{v+3+v-3}=\frac{u+2-u+2}{v+3-v+3}\)
\(\Rightarrow\frac{2u}{2v}=\frac{4}{6}\)
\(\Leftrightarrow\frac{u}{v}=\frac{2}{3}\Leftrightarrow\frac{u}{2}=\frac{v}{3}\)
Ta có:
\(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)
<=> (u+2).(v-3)=(u-2).(v+3)
<=>uv+2v-3u-6=uv-2v+3u-6
<=>2v-3u=3u-2v
<=>2v+2v=3u+3u
<=>4v=6u
<=>2v=3u
<=>\(\frac{u}{2}=\frac{v}{3}\)
\(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)
nhân chéo,ta có
(u+2)(v-3)=(u-2)(v+3)
<=> uv-3u+2v-6=uv+3u-2v-6
=> uv-3u+2v-6-uv-3u+2v+6=0
<=> -6u+4v=0
<=> 4v =6u
<=> 2v =3u
<=> \(\frac{u}{2}=\frac{v}{3}\)(đpcm)
\(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)
\(\Rightarrow\left(u+2\right)\left(v-3\right)=\left(u-2\right)\left(v+3\right)\)
\(\Rightarrow uv-3u+2v-6=uv+3u-2v-6\)
\(\Rightarrow uv-3u+2v-6-\left(uv+3u-2v-6\right)=0\)
\(\Rightarrow uv-3u+2v-6-uv-3u+2v+6=0\)
\(\Rightarrow\left(uv-uv\right)+\left(2v+2v\right)+\left(-3u-3u\right)+\left(-6+6\right)=0\)
\(\Rightarrow4v-6u=0\)
\(\Rightarrow2v-3u=0\)
\(\Rightarrow2v=3u\)
\(\Rightarrow\frac{u}{2}=\frac{v}{3}\) (đpcm)