Giả sử \(a^2=bc\Rightarrow\frac{a}{b}=\frac{c}{a}\)
Đặt \(\frac{a}{b}=\frac{c}{a}=d\Rightarrow\hept{\begin{cases}a=db\\c=da\end{cases}}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
\(\Leftrightarrow\frac{db+b}{db-b}=\frac{da+a}{da-a}\)
\(\Leftrightarrow\frac{b\left(d+1\right)}{b\left(d-1\right)}=\frac{a\left(d+1\right)}{a\left(d-1\right)}\)
\(\Leftrightarrow\frac{d+1}{d-1}=\frac{d+1}{d-1}\left(đpcm\right)\)
=))
Ta có : a2 =bc
=>\(\frac{a}{b}=\frac{c}{a}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
=> \(\frac{a}{b}=\frac{c}{a}\)=\(\frac{c-a}{a-b}=\frac{c+a}{a+b}\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)