Ta có
abcd = ab.100 + cd
= ab.99 + ab + cd
= ab.99 + (ab + cd)
Do ab.99= ab.9.11 chia hết cho 11 và theo bài ra ta có ab + cd chia hết cho 11
nên ab.99 + (ab + cd) chia hết cho 11
Vậy abcd chia hết cho 11
Ta có
abcd = ab.100 + cd
= ab.99 + ab + cd
= ab.99 + (ab + cd)
Do ab.99= ab.9.11 chia hết cho 11 và theo bài ra ta có ab + cd chia hết cho 11
nên ab.99 + (ab + cd) chia hết cho 11
Vậy abcd chia hết cho 11
chứng minh rằng nếu ( ab + cd) chia hết cho 11 thì abcd chia hết cho 11
(có gạch ngang trên đầu)
Chứng minh rằng tổng (ab+cd+eg) chia hết cho11 thì abcdeg cũng chia hết cho 11 (có gạch đầu)
chứng tỏ rằng:
A) Số aaa chia hết cho 37(a khác 0)
B) ab - ba chia hết cho 9
C) nếu ab+ cd chia hết cho11 thì abcd chia hết cho 11
CMR nếu ab + cd chia hết cho 11 thì abcd chia hết cho 11
chứng mnh rằng nếu (ab +cd) chia hết cho 11 thì abcd chia hết cho11
CMR: ab+cd chia hết cho 11 thì abcd chia hết cho 11
chứng minh rằng :nếu ab+cd chia hết cho 11 thì abcd cũng chia hết cho 11(biết rằng ab; cd là số tự nhiên có hai chữ số;abcd là số tự nhiên có 4 chữ số
cho abc khác 0 CMR:
a) M=ab+ba chia hết cho 11
b)abc-cba chia hết cho 99
c)Nếu abcd chia hết cho 99 thì ab+cd chia hết cho 99
CMR nếu ab + cd chia hết cho 99 thì abcd chia hết cho 99