Bài 1: Chứng minh rằng nếu a2=bc ( với a\(\ne\)b và a\(\ne\)c thì \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
Chứng minh rằng nếu \(a^2=bc\)(với \(a\ne b;a\ne c\)) thì \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
Chứng minh nếu \(a^2\)=bc (với a\(\ne\)b và a\(\ne\)c) thì\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
Ai đúng nhanh nhất mk sẽ tk
CMR: Nếu a(y+z)=b(z+x)=c(x+y)\(\left(a\ne b\ne c\ne0\right)\)thì \(\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)
Chứng minh rằng nếu a2 = bc ( với a \(\ne\) b và a \(\ne\) c ) thì \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
Chứng minh rằng nếu \(a^2\)= bc(với a\(\ne\)b và a \(\ne\)c) thì \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
Chứng minh rằng nếu \(a^2=bc\) ( với \(a\ne b,a\ne c\)) thì \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
Chứng minh rằng nếu \(a^2=bc\) ( với \(a\ne b,a\ne c\)) thì \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
CMR: nếu \(\frac{a}{b}\)=\(\frac{c}{d}\)\(\ne\)1 thì \(\frac{a+b}{a-b}\)=\(\frac{c+d}{c-d}\)(a,b,c,d\(\ne\)0)