ta có :
\(n^3+5n=n^2-n+6n\)
\(=\left(n-1\right)n\left(n+1\right)+6n\)
mà \(\left(n-1\right)n\left(n+1\right)⋮2;3\)
\(\Rightarrow\left(n-1\right)n.\left(n+1\right)⋮6\)
\(\Rightarrow6n⋮6\)
\(\Rightarrow n^3+5n⋮6\)
sorry mk nhầm !
chỗ : \(n^2-n+6n\)phải thành
\(n^3-n+6n\)
\(n^3+5n=n.\left(n^2+5\right)=n.\left(n^2-1\right)+6n=n.\left(n-1\right).\left(n+1\right)+6n\)
\(\hept{\begin{cases}n.\left(n+1\right).\left(n-1\right)⋮2,3\text{ hay }n.\left(n+1\right).\left(n-1\right)⋮6\forall n\in Z\\6n⋮6\forall n\in Z\end{cases}}\)
=> đpcm
p/s: cách này có vẻ gọn hơn =)