cmr: n(2n+1)(7n+1) chia het cho 6
CMR n x (2n + 7) x (7n + 7) chia hết cho 6
Cho n thuộc N.Chứng minh rằng:
a) (n+10)(n+15) chia hết cho 2
b) n(n+1)(2n+1) chia hết cho 6
c) n(2n+1)(7n+1) chia hết cho 6 với mọi n thuộc N
chứng minh rằng với mọi số nguyên n ta luôn có
a) n.(n+1) chia hết cho 2
b) n.(n+1).n.(n+2) chia hết cho 6
c)n.(n+1).(2n+1) chia hết cho 2
d) n.(2n+1) .(7n+1) chia hết cho 6
CMR: V n thuộc N thì: A = n(2n+7)(7n+7) chia hết cho 6
Tìm n thuộc N
1. n+7 chia hết cho n-2
2. 46-2n chia hết cho n
3. 3n+15 chia hết cho n+1
4. 8n-7 chia hết cho 4n +1
5.n2+2n+6 chia hết cho n+2
6. n2+2n+6 chia hết cho n+4
7. 7n chia hết cho n-3
Chứng minh n(2n+1)(7n+1) chia hết cho 6
Tìm các số tự nhiên n, biết:
a) 7n chia hết cho n+4
b) n^2+2n+6 chia hết cho n+4
c) n^2+n+1 chia hết cho n+1
Bài 1: Tìm n:
a, 2n + 1 chia hết cho (6n - 1)
b, 3n chia hết cho (5 - 2n)
c, 4n + 3 chia hết cho (2n + 6)
d, (n - 1) chia hết cho 11
e, (n + 11) chia hết cho (n - 1)
g, (3n + 24) chia hết cho (n - 4)
h, 7n chia hết cho (n-3)