Giả sử ngược lại, tồn tại ít nhất số n lẻ sao cho \(\left(n^2+4n+5\right)⋮8\)
Đặt \(n=2k+1\) với \(k\in Z\)
Khi đó: \(n^2+4n+5=\left(2k+1\right)^2+4\left(2k+1\right)+5\)
\(=4k^2+12k+10=2\left(2k^2+6k+5\right)\)
Vì \(2k^2+6k+5=2k\left(k+3\right)+5\) luôn là một số lẻ với mọi \(k\in Z\) nên \(\left(2k^2+6k+5\right)\)không chia hết cho 4.
\(\Rightarrow2\left(2k^2+6k+5\right)\) không chia hết cho 8 với mọi \(k\in Z\) hay \(n^2+4n+5\) không chia hết cho 8 với mọi n là số nguyên (mâu thuẫn với điều giả sử)
Vậy điều giả sử sai, ta có đpcm.
Vi n la le =>Ta co n=2k+1
khi do ta co:n^2+4n+5=(2k+1)^2+4(2k+1)+5
=4k^2+12k+10=2(k^2+6k=5)=2(2k(k+3)+5)
Do 2k(k+3)+5 la so le=>2k(k+3)+5 ko chia het cho 4
=>2(2k(k+3)+5) ko chia het cho 8
=>n^2+4n+5 ko chia het cho 8(dpcm)
Giả sử ngược lại, tồn tại ít nhất số n lẻ sao cho (n2+4n+5)⋮8
Đặt n=2k+1 với k∈Z
Khi đó: n2+4n+5=(2k+1)2+4(2k+1)+5
=4k2+12k+10=2(2k2+6k+5)
Vì 2k2+6k+5=2k(k+3)+5 luôn là một số lẻ với mọi k∈Z nên (2k2+6k+5)không chia hết cho 4.
⇒2(2k2+6k+5) không chia hết cho 8 với mọi k∈Z hay n2+4n+5 không chia hết cho 8 với mọi n là số nguyên (mâu thuẫn với điều giả sử)
Vậy điều giả sử sai, ta có đpcm.