Do \(n+1\)không chia hết cho 4 nên \(n=4k+r\in\left\{0;2;3\right\}\)
Ta có : \(7^4-1=2400\div100\)
Ta viết : \(7^n+2=7^{4k+r}+2=7^r\left(7^{4k}-1\right)+7^r+2\)
Vậy hai chữ số tận cùng của \(7^n+2\) cũng chính là hai chữ số tận cùng của \(7^r+2\left(r=0;2;3\right)\) nên chỉ có thể \(03;51;45\)theo tính chất 5 thì rõ ràng \(7^n+2\) không thể là số chính phương khi n không chia hết cho 4