CM CÁC HẰNG ĐẲNG THỨC ;
\(\left(A^2+B^2+C^2\right)\left(X^2+Y^2+Z^2\right)=\left(AX+BY+CZ\right)^2+\left(AY-BX\right)^2+\left(AZ-CX\right)^2+\left(BZ-CY\right)^2\)
1)Chứng minh rằng nếu n là số tự nhiên sao cho n+1 và 2n+1 đều là các số chính phương thì n là bội của 24
2) CMR nếu:
\(\frac{bz+cy}{x\left(-ax+by+cz\right)}=\frac{cx+az}{y\left(ax-by+cz\right)}=\frac{ay+bx}{z\left(ax+by-cz\right)}\left(1\right)\)
thì \(\frac{x}{a\left(b^2+c^2-a^2\right)}=\frac{y}{b\left(c^2+a^2-b^2\right)}=\frac{z}{c\left(a^2+b^2-c^2\right)}\)
3) Cho độ dài ba cạnh a,b,c của một tam giác. CMR:
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+3\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{abc}\ge9\)
Cho a,b,c là 3 số khác 0 thỏa mãn \(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}\)
CMR \(\left(ax+by+cz\right)^2=\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)
Phân tích đa thức thành nhân tử : \(A=\left(ax+by+cz\right)^2+\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2\)
Phân tích đa thứa sau thành nhân tử: \(A=\left(ax+by+cz\right)^2+\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2\)
Cho a,b,c là ba số không âm thỏa mãn \(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}\)
Chứng minh rằng:\(\left(ax+by+cz\right)^2=\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)\)
Phân Tích đa thức thành phân tử:
Câu 1: \(\left(ax+by\right)^2-\left(ay+bx\right)^2\)
Câu 2: \(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)
Câu 3: \(x^2-x-12\)
Câu 4: \(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)
CMR nếu \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)thì \(\left(x^2+y^2+z^2\right).\left(a^2+b^2+c^2\right)=\left(ax+bx+cz\right)^2\)
Cho đa thứ \(f\left(x\right)=x\left(x+1\right)\left(x+2\right)\left(ax+b\right)\)xác định a, b để \(f\left(x\right)-f\left(x-1\right)=x\left(x+1\right)\left(2x+1\right)\)\(\forall x\)
1) Rút gọn biểu thức :
a)\(\frac{\left(a-b\right)\left(a-d\right)}{\left(b^2-a^2\right)\left(d^2-c^2\right)}\)
b)\(x^4-2x^2y+xy^2-9xy^4\)
c)\(x^3-2x^2y+xy^2-9xy^4\)
d)\(\left(ax+by\right)^2-\left(ay+bx\right)^2\)