Đặt d=UCLN(2n+3;4n+8)
Ta có: 2n+3 chia hết cho d
4n+8 chia hết cho d =>(4n+8):2=2n+4
=> (2n+4)-(2n+3)=1 chia hết cho d
=>d=1
vậy 2n+3 và 4n+8 là 2 số nguyên tố cùng nhau
Theo đề bài, ta có:
2n+3; 4n+8 \(⋮\) d
+) 2n+3 \(⋮\) d
+) 4n+8 \(⋮\) d => 2n+4 \(⋮\)d ( Vì 4n+8 : 2 )
Suy ra, (2n+4) - (2n+3) \(⋮\)d và d=1
Số nguyên tố tìm được là 1. Vậy 2 số 2n+3 và 4n+8 là 2 số nguyên tố cùng nhau.