BĐT svac
\(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\forall a,b>0\)
BĐT svac
\(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\forall a,b>0\)
CMR :
a) \(-2a^2-a-7< 0\)
b) \(a^2\le4a-3với1\le a\le3\)
c) \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với a,b dương
CMR
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Chứng minh rằng:
a)a2+b2-2ab≥0
b)\(\frac{a^2+b^2}{2}\)≥ab
c)a(a+2)<(a+1)2
d)m2+n2+2≥2(m+n)
e)(a+b)(\(\frac{1}{a}+\frac{1}{b}\))≥4(Với a>0,b>0)
chứng minh : nếu a≤b thì \(\frac{-2}{3}\)a+4≥\(-\frac{2}{3}b\)+4
cho a,b là các số dương.Chứng minh rằng:\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Cho a,b,c >0. CMR
\(\left(2\frac{a^2}{b}+\frac{b^3}{c^2}+\frac{c^4}{a^3}\right)+\frac{2}{\left(a+b\right)^2}+\frac{1}{2c^2}\ge8\)
Cho a,b,c >0 , chứng minh rằng
a) \(\frac{a^3}{b}\ge a^2+ab-b^2\)
b)\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\)
a,b,c khác 0. Chứng minh:
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge a+b+c\) (a,b,c>0)
a)Chứng tỏ rằng: \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\) với mọi giá trị dương của a,b,x,y
b) Chứng tỏ rằng: \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\) với a,b,c dương