Bài toán 1. Cho a, b, c là các số thực dương thỏa mãn $latex a+b+c=3$. Chứng minh rằng
$latex \frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}+\frac{1}{{{c}^{2}}}+\frac{\text{2}\left( {{a}^{\text{2}}}+{{b}^{2}}+{{c}^{2}} \right)}{3}\ge 5$
a, chứng minh:
\(n^4+\frac{1}{4}=\left[\left(n-1\right)n+\frac{1}{2}\right].\left[\left(n+1\right)n+\frac{1}{2}\right]\)
b, Áp dụng câu a) thu gọn:
\(\frac{\left(1^4+\frac{1}{4}\right).\left(3^4+\frac{1}{4}\right)...\left(13^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right).\left(4^4+\frac{1}{4}\right)...\left(14^4+\frac{1}{4}\right)}\)
cho a,b,c là 3 số dương thỏa mãn abc=1 chứng minh rằng
\(\frac{1}{a^3\left(b+c\right)}\)+\(\frac{1}{b^3\left(c+a\right)}\)+\(\frac{1}{c^3\left(a+b\right)}\)≥\(\frac{3}{2}\)
1. Giải các bất phương trình sau và biểu diễn tập nghiệm của phương trình trục số:
a) 4x - 5 >0
b) \(-\frac{2}{3}x-4>0\)
c) \(\frac{x+3}{4}+\frac{x-2}{2}\ge\frac{3x+1}{8}\)
d)\(x^{2^{ }}-4x+4\le\left(x+3\right)\left(x-3\right)\)
2. Giai các pt sau :
a) \(\left|2x-1\right|=-x+5\)
b)\(5x-2\left|x-3\right|=x+1\)
c)\(4\left|x+1\right|+3\left(x+3\right)=14\)
Mọi người ơi giải bài tập này hộ tớ đi
Mai tớ kt 1 tiết rồi
a)
\(\frac{\left(2x+1\right)^2}{4}+\frac{\left(2x-1\right)^2}{2}\ge\frac{12\left(x+5\right)^2}{4}\) ;
b)
\(\frac{\left(1-x\right)^2}{7}-\frac{2\left(x+3\right)^2}{3}\le\frac{-11\left(x+5\right)^2}{21}\) ;
c)
\(|5-3x|=2+x\)
Cho a, b, c là độ dài 3 cạnh của tam giác.
Chứng minh \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{3\left(a-b\right)\left(b-c\right)\left(c-a\right)}{abc}\ge9\)
a)Chứng tỏ rằng: \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\) với mọi giá trị dương của a,b,x,y
b) Chứng tỏ rằng: \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\) với a,b,c dương
chứng minh bất đẳng thức sau:
a, \(\frac{\sqrt{a}+\sqrt{b}}{2}< \sqrt{\frac{a+b}{2}}\) với a>0,b>0, a khác b
b, \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\) ≥ \(\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)
Giải các bất PT sau
a. \(7x-5\ge-3x+13\)
b. \(9x^2+4x-3\ge\left(3x+2\right)^2\)
c. \(\frac{3x-5}{8}+\frac{1-5x}{4}< \frac{1}{2}\)