Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
QUan

CMR  \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2010\sqrt{2009}}< \frac{89}{45}\)

Hoàng Lê Bảo Ngọc
1 tháng 10 2016 lúc 21:34

Xét với n là số tự nhiên không nhỏ hơn 1 , ta có 

\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\)

\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Áp dụng điều trên : 

\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2010\sqrt{2009}}< \)

\(< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2009}}-\frac{1}{\sqrt{2010}}\right)=2\left(1-\frac{1}{\sqrt{2010}}\right)< \)

\(< 2\left(1-\frac{1}{\sqrt{2025}}\right)=\frac{88}{45}\)


Các câu hỏi tương tự
QUan
Xem chi tiết
Nguyễn Ngọc Linh
Xem chi tiết
Văn Quang Lương
Xem chi tiết
Mèo con dễ thương
Xem chi tiết
gấukoala
Xem chi tiết
Võ Thị Thà
Xem chi tiết
tran bao trung
Xem chi tiết
huongkarry
Xem chi tiết
Vibranium
Xem chi tiết