\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}\)
\(=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}\ge3+2=5\)
\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}\)
\(=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}\ge3+2=5\)
chứng minh với mọi giá trị thực của x , ta luôn có
\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}\ge5\)
1) CM với mọi giá trị thực của x; ta luôn có :
\(\sqrt{3x+6x+12}+\sqrt{5x^4-10x^2+9}\ge5\)
2) giải pt: \(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}=3-4x-2x^2\)
giải chi tiết giúp mk câu 1 nha, cảm ơn nhiều
\(\left(5\right)\sqrt{x+3-4\sqrt{x-1}}\sqrt{x+8+6\sqrt{x-1}}=5\)
\(\left(6\right)2x^2+3x+\sqrt{2x^2+3x+9}=33\)
\(\left(7\right)\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+30}=8\)
\(\left(8\right)x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
gpt:
\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}=3-4x-2x^2\)
giải phương trình
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
Giải phương trình:
\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+30}=8\)
Giải phương trình vô tỉ:
a, \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
b, \(\frac{2\sqrt{x}}{\sqrt{x+1}}+\sqrt{x}=\sqrt{x+9}\)
\(a,\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
\(b,\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\)
Giải phương trình
GIẢI PHƯƠNG TRÌNH:
a)\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
b)\(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)
c)\(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=1+\sqrt{3}\)
d)\(\sqrt{9x^2-6x+2}+\sqrt{45x^2-30x+9}=\sqrt{6x-9x^2+8}\)