CMR \(\frac{1.3.5.7............\left(2n-1\right)}{\left(n+1\right).\left(n+2\right).\left(n+3\right)............2n}\)=\(\frac{1}{2^n}\)
CMR : \(\frac{1.3.5.7..............\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)...............2n}\) =\(\frac{1}{^{2^n}}\)
\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{\left(2n+1\right)\cdot\left(2n+3\right)}=\frac{n+1}{n+3}\)
1)CMR:
a) \(\frac{1.3.5...39}{21.22.23...40}=\frac{1}{2^{20}}\)
b) \(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right).\left(n+2\right)\left(n+3\right)...2n}=\frac{1}{2^n}\)( n thuộc N* )
Tính Q=\(\frac{1.3}{3.5}+\frac{2.4}{5.7}+\frac{3.5}{7.9}+.....+\frac{\left(n-1\right)\left(n+1\right)}{\left(2n-1\right)\left(2n+1\right)}+......+\frac{1002.1004}{2005.2007}\)
\(D=\left(1-\frac{4}{1}\right)\left(1-\frac{4}{9}\right)\left(1-\frac{4}{25}\right)...\left(1-\frac{1}{\left(2n-1\right)^2}\right),\)với \(n\in N,n\ge1\)
tính \(D=\left(1-\frac{4}{1}\right)\left(1-\frac{4}{9}\right)...\left(1-\frac{1}{\left(2n-1\right)^2}\right)\)n thuộc N, n>1
Tính \(D=\left(1-\frac{4}{1}\right)\left(1-\frac{4}{9}\right)...\left(1-\frac{1}{\left(2n-1\right)^2}\right)\)với n thuộc N, n>1
Chứng minh rằng:
a)\(\frac{1.3.5...39}{21.22.23...40}=\frac{1}{2^{20}}\)
b)\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n}=\frac{1}{2^n}\)với n thuộc N*