Cho p là số nguyên tố lớn hơn 2
CMR: có vô số n thuộc N sao cho \(n.2^n-1\)
chia hết cho p
bài 1 cmr với mọi số nguyên tố lớn hơn 2 và 3 đều có dạng 6k+1 và 6k -1
bài 2 tìm các số tự nhiên xyz thỏa mãn
x2-2y2-1=0
x2+y3=z4
bài 3 cmr chỉ có 1 cặp số nguyên dương a,b để a4+4b4 là số nguyên tố
Cmr: nếu b là số nguyên tố khác 3 thì A=3n+1+2009b là hợp số với n thuộc N, cảm ơn ạ.
Cho p là số nguyên tố có dạng 4k + 3 . Cho các số nguyên x và y . Biết \(x^2+y^2⋮p\). CMR: x và y chia hết cho p
Tìm tất cả các số nguyên tố P có dạng P = n^2 + 1. Trong đó n là số nguyên dương, biết rằng P không có nhiều hơn 19 số.
Cho n là số nguyên dương lớn hơn 5. CMR: trong dãy số n+1, n+2,....,n+30 có nhiều nhất 8 số nguyên tố
Tìm số nguyên tố có dạng n(n+1)(n+2)/6
CMR: nếu p là số nguyên tố lớn hơn 3 thì A=\(3n+2+2014p^2\)
là hợp số với mọi số tự nhiên n
CMR không có số chẵn nào ngoài 2 là số nguyên tố