a/b=c/d
=>a/c=b/d
=>a/c.a/c=b/d.a/c=b/d.b/d
=>ab/cd=a2/c2=b2/d2=(a2+b2)/(c2+d2)
vậy ...
a/b=c/d
=>a/c=b/d
=>a/c.a/c=b/d.a/c=b/d.b/d
=>ab/cd=a2/c2=b2/d2=(a2+b2)/(c2+d2)
vậy ...
60. Chứng minh rằng nếu \(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
Chào các bạn, hôm nay mình có một bài toán khá khó muốn nhờ các bạn giải giúp
a) Chứng minh rằng nếu\(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
b) Cho \(\frac{a}{b}=\frac{c}{d}\). Hãy chứng minh: \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)
CMR: nếu\(\frac{a}{b}=\frac{c}{d}thì\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
Bài 1,\(\frac{a+5}{a-5}=\frac{b+6}{b-6}\). Chứng minh rằng: \(\frac{a}{b}=\frac{5}{6}\)
Bài 3, Bốn số a, b,c,d thỏa mãn điều kiện:\(b^2=ac;c^2=bd.\)Chứng minh:\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Bài 2, Chứng minh rằng nếu: \(\frac{a}{b}=\frac{c}{d}\) thì \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
chứng minh nếu a/b =c/d thì :
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
Cmr nếu \(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{a^2+b^2}{c^2+d^2}\)=\(\frac{ab}{cd}\)
Biết \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)với a,b,c,d khác 0. Chứng minh rằng: \(\frac{a}{b}=\frac{c}{d}\)hoặc\(\frac{a}{b}=\frac{d}{c}\)
CMR nếu \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)(a,b,c,d khác 0). CMR \(\frac{a}{b}=\frac{c}{d}\)hoặc \(\frac{a}{b}=\frac{d}{c}\)
cho\(\frac{a}{b}=\frac{c}{d}\)chứng minh rằng
\(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)