a) VP=x2 -xy+xy-y2=x2-y2=VT(đpcm)
b) em sai đề rồi rồi ! có gì em xem lại đề nha
a) VP=x2 -xy+xy-y2=x2-y2=VT(đpcm)
b) em sai đề rồi rồi ! có gì em xem lại đề nha
CM các bất đẳng thức sau:
a) \(x^2-y^2=\left(x+y\right)\left(x-y\right)\)
b) \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
a) CMR : \(\frac{\left|x\right|}{\left|y\right|+2}+\frac{\left|y\right|}{\left|x\right|+2}\ge\frac{\left|x\right|+\left|y\right|}{\left|x\right|+\left|y\right|+2}\)
b) CMR \(\frac{\left|x\right|}{\left|y\right|+2}+\frac{\left|y\right|}{\left|x\right|+2}\ge\frac{\left|x+y\right|}{\left|x+y\right|+2}\)
Bài 7: Chứng minh 2 biểu thức sau đây 0 bằng nhau
a) A=3(x+y)+5x-y và B=x+y
b) M=(x-1)² và N=x²+1)
c)P=x²-y² và Q=x²+y²
Bài 8: Tìm giá trị các biến a và b làm cho các biểu thức sau 0 có nghĩa
a)\(\frac{ab+b^2}{\left(a-1\right)^2}\)
b) \(\frac{1+ab^2}{\left(a-2\right)\left(b+5\right)}\)
c) \(\frac{\left(a+b^2\right)\left(a-2\right)}{ab^2\left(a-1\right)}\)
d) \(\frac{a^2b+b^3}{ab-a^2}\)
Mấy bạn ơi giúp mk ( cho 3 like nếu đúng )
a, CMR: \(x^2-y^2=\left(x+y\right)\left(x-y\right)\)
b) Cho a, b, c là độ dài 3 cạnh của tam giác. CMR: \(\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\le abc\)
CMR nếu a,b,c,x,y,z thỏa mãn điều kiện:
\(\frac{bz+cy}{x\left(-ax+by+cz\right)}=\frac{cx+az}{y\left(ax-by+cz\right)}=\frac{ay+bx}{z\left(ax+by-cz\right)}\)
thì \(\frac{x}{a\left(b^2+c^2-a^2\right)}=\frac{y}{b\left(a^2+c^2-b^2\right)}=\frac{z}{c\left(a^2+b^2-c^2\right)}\)
( Giả thiết các tỉ số đều có nghĩa )
CMR nếu a,b,c,x,y,z thỏa mãn :
\(\frac{bz+cy}{x\left(-ax+by+cz\right)}=\frac{cx+az}{y\left(ax-by+cz\right)}=\frac{ay+bx}{z\left(ax+by-cz\right)}\)
thì \(\frac{x}{a\left(b^2+c^2-a^2\right)}=\frac{y}{b\left(a^2+c^2-b^2\right)}=\frac{z}{c\left(a^2+b^2-c^2\right)}\)
( giả thiết các tỉ số đều có nghĩa )
tính giá trị của biểu thức:
\(A=\dfrac{\left(a+b\right)\left(-x-y\right)-\left(a-y\right)\left(b-x\right)}{abxy\left(xy+ay+ab+by\right)}\) với \(a=\dfrac{1}{3};b=-2;x=\dfrac{3}{2};y=1\)
1.Với giá trị nào của biến thì giá trị của biểu thức bằng 0
\(\frac{x+1}{7};\frac{3x+3}{5};\frac{3x\left(x-5\right)}{x-7};\frac{2x\left(x+1\right)}{3x+4}\)
2.Tính giá trị của các biểu thức sau:
\(A=\frac{a^2\left(a^2+b^2\right)\left(a^{\text{4}}+b^{\text{4 }}\right)\left(a^8+b^8\right)\left(a^2-3b\right)}{\left(a^{10}+b^{10}\right)}\)tại a=6;b=12
\(B=3xy\left(x+y\right)+2x^3y+2x^2y^2+5\)tại x+y=0
\(C=2x+2y+3xy\left(x+y\right)+5\left(x^3y^2+x^2y^3\right)+4\)tại x+y=0
cmr nếu\(a\left(z+y\right)=b\left(z+x\right)=c\left(x+y\right);a\ne b\ne c\ne0\Rightarrow\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)