Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đoàn Quốc Khánh

CMR : a)n(n^2+12)+(2_ngày)(n^2_3n+1)(n^2_3n+1)+8 chia hết cho 5 với mọi n thuộc Z

b)n^5_n chia hết cho 30

Messi Của Việt Nam
15 tháng 9 2016 lúc 13:12

CMR : a)n(n^2+12)+(2_ngày)(n^2_3n+1)(n^2_3n+1)+8 chia hết cho 5 với mọi n thuộc Z

b)n^5_n chia hết cho 30

vũ xuân việt anh
29 tháng 11 2019 lúc 20:52

Ta có: 30=5.6, mà (5;6)=1 nên ta chứng minh n5-n chia hết cho 5 và 6

+) n5-n=n(n4-1)=n(n2-1)(n2+1)=n(n-1)(n+1)(n2-4+5)=n(n-1)(n+1)(n2-4)+5n(n-1)(n+1)

                                                                                  =(n-2)(n-1)n(n+1)(n+2)+5n(n-1)(n+1)

   Vì (n-2)(n-1)n(n+1)(n+2) là tích của 5 số nguyên liên tiếp nên chia hết cho 5

        5n(n-1)(n+1) chia hết cho 5

    => n5-n chia hết cho 5              (1)

+) n5-n=n(n4-1)=n(n2-1)(n2+1)=n(n-1)(n+1)(n2+1)

                                                =(n-1)n(n+1)(n2+1)

Vì (n-1)n(n+1) là tích của 3 số nguyên liên tiếp nên chia hết cho 6

=> (n-1)n(n+1)(n2+1) chai hết cho 6

=> n5-n chia hết cho 6                       (2)

  Từ (1) và (2) => n5-n chia hết cho 30

               Vậy n5-n chia hết cho 30   (đpcm)       

Khách vãng lai đã xóa

Các câu hỏi tương tự
Le Minh Hieu
Xem chi tiết
Đòan đức duy
Xem chi tiết
chau giang
Xem chi tiết
Hacker Ngui
Xem chi tiết
lan phạm
Xem chi tiết
Trần Đại Tài
Xem chi tiết
Blitzcrank
Xem chi tiết
Trần Lệ Quyên
Xem chi tiết
PeaPea
Xem chi tiết