bài 1 :
cho a= n^2+n+1
a, cmr a là số tự nhiên lẻ với mọi số tự nhiên n
b, cmr a ko chia hết cho 5 với mọi số tự nhiên n
bài 2: cho A= 1+2 + 3+ 4+ ... + n
a) với n = 2009 . cmr: A chia hết cho 2009 và A ko chia hết cho 2010
b) cmr: ( A- 7 ) ko chia hết cho 10 với mọi số tự nhiên n
Bài 1:CMR với mọi q,p là số tự nhiên, thì:
a,105p+30q chia hết cho 5
b,105p+5q+1 chia cho 5 dư 1
Bài 2: CMR: (n2+n+1) ko chia hết cho 5 (n là số tự nhiên)
Bài 3:CMR trong hai số chẵn liên tiếp có một số chia hết cho 4.
Chứng tỏ răng A = n^2 + n^1 ko chia hết cho 15 với mọi số tự nhiên n
nhanh like cho
Bài 6
a, chứng minh rằng với mọi số tự nhiên n thuộc N thì 60n +15 chia hết cho 15 nhưng không chia hết cho 30
b, chứng minh rằng không có số tự nhiên nào chia 15 dư 6 , chia 9 dư 1
c, chứng minh rằng 1005a +2100b chia hết cho 15 , với mọi số tự nhiên a,b thuộc N
d, chứng minh rằng A= n2+n+1 không chia hết cho 2 và 5 với mọi số tự nhiên n thuộc N
chứng tỏ n^2+n+1 ko chia hết cho 15 với mọi số tự nhiên n
CMR : ( n + 10 ) . ( n +15 ) chia hết 2 với n thuộc mọi số tự nhiên
Chứng tỏ rằng số A=n2+n+1 ko chia hết cho 15 với mọi số tự nhiên n
BT:chứng minh rằng :
a,(5n+7).(4n+6)chia hết cho 2 với mọi số tự nhiên n
b,(8n+1).(6n+5)ko chia hết cho 2 với mọi số tự nhiên n