ta có
a+b+a+b+a+b=\(3a+3b=3\left(a+b\right)⋮3\)
Ta co : ababab = a + b + a + b + a + b
= ( a + a + a ) + ( b + b + b )
= 3a + 3b
= 3 ( a + b )
Vi 3 chia het cho 3 => 3(a + b ) chia het cho 3
=> ababab chia het cho 3
ababab = 100000a + 10000b + 1000a + 100b + 10a + b = 101010a + 10101b
Mà 1 + 1 + 1 = 3 chia hết cho 3
=> 101010 và 10101 chia hết cho 3.
=>101010a + 10101b chia hết cho 3
hay ababab chia hết cho 3
ta có : ababab = 100000a + 10000b + 1000a + 100b + 10a + b
= ( 100000a + 1000a + 10a ) + ( 10000b + 100b + b )
= 101010a + 10101b
= 3 . 33670a + 3 . 3367b
= 3 . ( 33670a + 3367b ) \(⋮\)3
=> ababab \(⋮\)3