\(A=3+3^2+3^3+...+3^{2012}+3^{2013}\)
\(=\left(3+3^2+3^3\right)+...+\left(3^{2011}+3^{2012}+3^{2013}\right)\)
\(=3\left(1+3+3^2\right)+...+3^{2011}\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right)\left(3+...+3^{2011}\right)\)
\(=13\left(3+...+3^{2011}\right)\)
Vì 13 chia hết cho 13 nên \(13\left(3+...+3^{2011}\right)\) chia hết cho 13
Vậy A chia hết cho 13
A=(3+32+33)+(34+35+36)+...+(32011+32012+32013)
A=3(1+3+32)+34(1+3+32)+...+32011(1+3+32)
A=3.13+3^4.13+...+3^2011.13
A=13(3+3^4+...+3^2011)chia hết cho 13
tick mk nha