cho các số nguyên a,b,c thỏa mãn: A= a^2+b^2+ab+3(a+b)+2018 chia hết cho 5.CMR a-b chia hết cho 5.
CMR:A=\(1^2+2^2+3^2+...+2018^2\) chia hết cho B=\(1+2+3+...+2018\)
Bài 1/Cho đa thức P(x). Cm rằng nếu P(x) chia hết cho x-a thì P(a)=0
Bài 2/Tìm a,b sao cho x^3+ax+b chia cho x+1 dư 3 và chia cho x-2 dư 1.Tìm k để đa thức P(x)=x^4-9x^3+21x^2+x+k chia hết cho đa thức Q(x)= x^2-x-2
Bài 3/ Cho:
• (a-2)^3+(b-2)^3+(c-2)^3=0
• a^2+b^2+c^2=6
• a+b+c=2
Cm (a^2018-2)×(b^2018-2)×(c^2018-2)=0
Các bạn giải nhanh giùm mình nha! Xin chân thành cảm ơn!!!
cmr: f(x)=(x2+x-1)2018+(x2-x+1)2018-2 chia hết cho g(x)=x2-x
Có ai onl giúp mik bài này nhé: Cho các số nguyên a,b,c t/m~:
A=a^2 +b^2+ab+3(a+b)+2018 chia hết cho 5. CMR: a-b chia hết cho 5
Cho a1 + a2 +...+ a2018= 32018
Chứng minh a13 + a23 +...+ a20183 chia hết cho 3
CMR luôn tồn tại STN n sao cho 5^n+1 chia hết cho 7^2018
CMR1^m+2^m+...+2017^m luôn chia hết cho 1+2+3+...+2017 với mọi m nguyên dương
M.n giúp mk zới -_-
CMR: \(f\left(x\right)=\left(x^2+x-1\right)^{2018}+\left(x^2-x+1\right)^{2018}-2\)chia hết cho \(g\left(x\right)=x^2-x\)
1)cho 3 số x, y,z thỏa mãn điều kiện x+y+z=2018 và x^3+y^3+z^3=2018^3. Cmr (x+y+z)^3=x^2017+y^2017+z^2017
2)
tìm các cặp số nguyên (x y) biết x^2-4xy+5y^2-16=0
3)Cho 3 số a,b,c thỏa mãn a+b+c=0 và a^2+b^2+c^2=2018
4)tính giả trị biểu thức A=a^4+b^4+c^4