\(81^7-27^9-9^{13}\)
\(=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=3^{28}-3^{27}-3^{26}\)
\(=3^{26}\left(3^2-3-1\right)\)
\(=3^{26}.5\)
\(=3^{22}.3^4.5=3^{22}.405⋮405\)
\(12^{2n+1}+11^{n+2}\)
\(=144^n.12+11^n.121\)
\(=144^n.12-11^n.12+11^n.133\)
\(=\left(144^n-11^n\right).12+11^n.133\)
Ta có: \(a^n-b^n⋮a-b\Rightarrow144^n-11^n⋮133\)
Vậy \(12^{2n+1}+11^{n+2}⋮133\)