Cho M=3^2012-3^2011+3^2010-3^2009+3^2008 \(M=3^{2012}-2^{2011}+3^{2010}-3^{2009}+3^{2008}\)
Chứng minh rằng M chia hết cho 10
Cmr 10^2010-1 chia het cho 99
3^1930+2^1930 chia het cho 13
(2^10+1)^2010 chia het cho 25^2010
(30^4)^1975×15^1870×4^935-(7^5)^1954. Chia hết cho 23
12^2000-2^1000 chia hết cho 10
2011^2013+2013^2011 chia het cho 2012
Cmr : \(2009^{2008}+2011^{2010}\)chia hết cho 2010
bài 7 : cho biểu thức A=(a^2012+b^2012+c^2012)-(a^2008+b^2008+c^2008) với a,b,c là các số nguyên dương . CM : A chia hết cho 30
bài 8 : Tìm các số thực a,b sao cho đa thức : f(x)=4x^4-11x^3-2ax^2+5bx-6 chia hết hết cho đa thức x^2-2x-3
Câu1: Cho A=(a^2012 +b^2012+c^2012)-(a^2008+b^2008+c^2008) (a b c thuộc Z+) chứng minh rằng A chia hết cho 30.
câu 2: Tìm dư trong phép chia:
a, 5^70+7^50 cho 12
b,3^8+3^6+3^2004 cho 91
câu 3: Cho x y thuộc Z
x^3y-xy^3 chia hết cho 6
cho biểu thức A=(a^2012+b^2012+c^2012)-(a^2008+b^2008+c^2008) , với a,b,c là các số nguyên dương . CM A chia hết cho 30
CMR: 20092008+20112010 chia het cho 2010
cm 2009^2008 chia hết cho 2011^2010
Chứng minh rằng: \(2009^{2008}+2011^{2010}\)chia hết cho 2010