Chứng Minh:
1/1*2+1/3*4+1/5*6+...+1/97*98+1/99*100=1/51+1/52+1/53+...+1/99+1/100
\(CMR:\) \(1-\frac{1}{2}+\frac{1}{3}-...+\frac{1}{99}-\frac{1}{100}=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
chứng minh rằng:
1-1/2+1/3-1/4+1/5-1/6+....+1/99-1/100=1/51+1/52+....+1/100
CMR :
\(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+\frac{1}{100}\)
Chứng minh rằng
1- 1/2+ 1/3- 1/4+...+ 1/99- 1/100= 1/51+ 1/52+...+ 1/100= -1/2
1/2+1/12+1/30+...+1/9120+1/9506+1/9900. / 50-50/51-51/52-...-97/98-98/99-99/100
Cho A=1/1*2+1/3*4+...+1/99*100 và B=1/50+1/51+1/52+...+1/100 . Tính: A-B=?
Chứng minh:
1×3×5×....×99 = 51×52×...×100/250
cho A = 1/1*2+1/3*4+...+1/99*100 và B= 2015/51+2015/52+2015/53+...+2015/100. Chứng minh rằng B chia hết cho A