\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2+3^2}+...+\dfrac{19}{9^2-10^2}\)
\(=\) \(\dfrac{1}{1^2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}\)
\(=\) \(1-\dfrac{1}{10^2}< 1\) ( đpcm )
\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2+3^2}+...+\dfrac{19}{9^2-10^2}\)
\(=\) \(\dfrac{1}{1^2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}\)
\(=\) \(1-\dfrac{1}{10^2}< 1\) ( đpcm )
Bài 1: CMR 3/1^2*2^2 + 5/2^2*3^2 + 7/3^2*4^2 + ....... + 19/9^2*10^2 bé hơn 1
Bài 2: CMR 1/3 + 2/3^2 Bài 1: CMR 3/1^2*2^2 + 5/2^2*3^2 + 7/3^2*4^2 + ....... + 19/9^2*10^2 bé hơn 3/4
Bài 3: Cho A= 1/1*2 + 1/3*4 + 1/5*6 + .... + 1/99*100. CMR 7/12 < A < 5/6
CMR A=3/1^2+2^2+5/2^2+3^2+7/3^2+4^2+....19/9^2+10^2 <1
trả lời được thì mình kết bạn nha
CMR: 3/1^2. 2^2 +5/2^2. 3^2+..........+19/9^2. 10^2 < 1
CMR : \(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2+10^2}\)< 1
cmr: 3/1^2 x 2^2 + 5/2^2 x 3^2 + ... = 19/9^2 x 10^2
CMR : 3/1^2.2^2 + 5/2^2.3^2 + 7/3^2.4^2 + ... + 19/9^2.10^2 < 1
\(CM:\frac{3}{1^2+2^2}+\frac{5}{2^2+3^2}+\frac{7}{3^2+4^2}+...+\frac{19}{9^2+10^2}< 1\)
Tính:
a) -5/7(14/5 - 7/10) : |-2/3| - 3/4(8/9 + 16/3) + 10/3(1/3 + 1/5)
b) 17/-26(1/6 - 5/3) : 17/13 - 20/3(2/5 - 1/4) + 2/3(6/5 - 9/2)
c) -8/9(9/8 - 3/2) + 5/4 : (5/2 - 15/4) - 3/4(10/9 - 8/3) : (-1/3)
d) 21/10 : (12/5 - 9/10) . (-4/7) - 3/2(1/6 - 7/12) + 1/5(3/2 - 1/4)
So sánh
a, 1/3 + 1/3^2 + 1/3^3 +....+ 1/3^99 + 1/3^100 và 1/2
b, 3/1^2*2^2 + 5/2^2 *3^2 +7/3^2*4^2 +......+ 19/9^2*10^2 và 1