Ta có: 31+32+33+…+399+3100
=(31+32)+(33+34)+…+(399+3100)
=3.(1+3)+33.(1+3)+…+399.(1+3)
=3.4+33.4+…+399.4
=(3+33+…+399).4 chia hết cho 4
=>31+32+33+…+399+3100 chia hết cho 4
Đặt \(A=3+3^2+3^3+...+3^{99}+3^{100}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)
\(=3\left(1+3\right)+3^{ 3}\left(1+3\right)+...+3^{99}\left(1+3\right)\)
\(=\left(1+3\right)\left(3+3^3+...+3^{99}\right)\)
\(=4\left(3+3^3+...+3^{99}\right)\)
Vì 4 chia hết cho 4 nên \(4\left(3+3^3+...+3^{99}\right)\)
Vậy A chia hết cho 4