để chứng minh 3n+2/5n+3l là pstg ta cần chứng minh ƯCLN[3n+2,5n+3]=1
Gọi ƯCLN[3n+2,5n+3]=d[d thuộc N*]
tao có:
3n+2chia hết cho d và 5n+3 chia hết cho d
suy ra 5.[3n+2]chia hêt cho d và 3.[5n+3]
suy ra 15n+10 chia hết cho d và 15n+9 chia hết cho d
suy ra [15n+10]-[15n+9] chia hết cho d
suy ra 1 chia hết cho d
suy ra d thuộc Ư[1]
Mà Ư[1]=[1,-1]
Lại có d thuộc N*
do đó d=1 hay ƯCLN[3n+2,5n+3]=1
suy ra 3n+2/5n+3 là pstg
vậy