Đặt A = 1 + 7 + 72 + ... + 7101
=> A = 70 + 71 + ... + 7101
=> A = 70 ( 1 + 7 ) + ... + 7100 ( 1 + 7 )
=> A = 70 . 8 + ... + 7100 . 8
=> A = 8 . ( 70 + ... + 7100 ) chia hết cho 8 ( đpcm )
Đặt A = 1 + 7 + 72 + ... + 7101
=> A = 70 + 71 + ... + 7101
=> A = 70 ( 1 + 7 ) + ... + 7100 ( 1 + 7 )
=> A = 70 . 8 + ... + 7100 . 8
=> A = 8 . ( 70 + ... + 7100 ) chia hết cho 8 ( đpcm )
Bài 7. Chứng tỏ rằng:
a) A=\(1+4+4^2+4^3+...+4^{2012}\) chia hết cho 21
b) B=\(1+7+7^2+7^3+...+7^{101}\) chia hết cho 8
chứng tỏ rằng
1] 1+ 4+4^2+4^3+...+4^2012 chia hết cho 21
2] 1+7+7^2+7^3+...7^101 chia hết cho 8
3] 2+2^2+2^3+...+2^100 chia hết cho 31 và 5
a) chứng minh rằng A = 1+4+4^2+4^3+......4^2012 chia hết cho 21
b)chứng minh rằng A=1+7+7^2+7^3+............+7^101 chia hết cho 8
chứng minh B = 1 + 7 + 7^2 + 7^3 + ... + 7101 chia hết cho 8
2/B=2^100+2^99+2^98+2^97+...+2^1+2^0 CMR(B+2^101)CHIA HẾT CHO 3
3/A=7^0+7^1+7^2+7^3+...+7^2013
A/THU GỌN A
B/CMR Ax6+2015^0+7^2014
C/CMR A CHIA HẾT CHO 8
4/C=3^1+3^3+3^5+3^7+...+3^2013
A/THU GỌN C
B/CMR Cx8+3=3^2015
C/(C+3^2015)CHIA HẾT CHO 10
5/D=8^0+8^1+8^2+8^3+...+8^211
A/THU GỌN D
B/CMR 7xD+9876543210^0=8^2012
C/CMR D CHIA HẾT CHO 9
6/
A/VẼ HÌNH THEO CÁC CÁCH DIỄN ĐẠT SAU.LẤY 4 ĐIỂM A,B,C,D TRONG ĐÓ B NẰM GIỮA A VÀ C CÒN D NẰM NGOÀI ĐƯỜNG THẲNG AC.KẺ CÁC ĐƯỜNG THẲNG ĐI QUA 2 TRONG 4 ĐIỂM A,B,C,D
B/CÓ BAO NHIÊU ĐƯỜNG THẲNG PHÂN BIỆT TRONG HINHG VỮ.VIẾT TÊN CÁC ĐƯỜNG THẲNG ĐÓ
1)2/5+x:5/7=1/3
CMR: 2)B=1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+1/7^2+1/8^2<1
3)CMR: S=3^2+3^3+...+3^101 chia hết cho 120
4)Cho S=5+5^2+5^3+...+5^2006
a) tính S
b)CMR S chia hết cho 6, và S chia hết cho 30
5) tìm số tự nhiên n sao cho 4n-5 chia hết cho 2n-1
1+7+72+73+...+7100+7101 chia hết cho 8
Chứng tỏ :
a) 5^2017+5^2016+5^2015 chia hết cho 31
b) 1+7+7^2+7^3+...+7^101 chia hết cho 8
Chứng tỏ rằng : 1+7+72+73+...+7101 chia hết cho 8