Chứng tỏ rằng 1/31+1/32+1/33+.......+1/149+1/150<13/6
a) Cho \(s=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)
CMR 1<s<2, từ đó suy ra s ko phải stn
b) Cho \(s=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+....+\frac{1}{60}\)
CMR 3/5< s < 4/5
Cho S =1/31+1/32+1/33+.......+1/6
CMR:3/5<5<4/5
Cho S=\(\)\(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+......+\frac{1}{60}\)
CMR:\(\frac{3}{5}\)<S<\(\frac{4}{5}\)
1/31+1/32+1/33+.......+1/149+1/150
1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+30+31+32+32+...+1000000
Tính nhanh
a) 31/23 - (7/32 + 8/23)
b) 38/45 - (8/45 - 17/51 - 3/11)
c)(1/3 + 12/67 + 13/41) - ( 79/67 - 28/41)
d) 1/5 + -1/6 + 1/7 + -1/8 + 1/9 + 1/8 + -1/7 + 1/6 + -1/5
\(S=\frac{1}{31}\)\(+\frac{1}{32}\)+...+\(\frac{1}{60}\)
CMR : \(\frac{3}{5}<s<\(\frac{4}{5}\)
cho S=1/31+1/32+1/33+...+1/60 Cmr S<4/5