Cristiano Ronaldo : đưa nick của Trần Thùy Dung và Monkey D.Luffy đây
Đặt A(n) = 11^(n+2) + 12^(2n+1)
khỏi suy nghĩ nhiều, ta dùng qui nạp nhé:
* n = 0: A(0) = 11² + 12 = 133 chia hết cho 133
* giả sử A(k) chia hết cho 133,
ta có: A(k) = 11^(k+2) + 12^(2k+1) chia hết cho 133
ta cm A(k+1) chia hết cho 133
A(k+1) = 11^(k+1+2) + 12^(2k+2+1) =
= 11^(k+2).11 + 12^(2k+1).12²
= 11.[11^(k+2)+12^(2k+1)] + (12²-11).12^(2k+1)
= 11.A(k) + 133.12^(2k+1)
Do giả thiết qui nạp A(k) chia hết cho 133 và 133.12^(2k+1) chi hết cho 133
nên ta có A(k+1) chia hết cho 133
tóm lại A(n) chia hết cho 133 với mọi n thuộc N
Vậy ...
Phan Bá Cường copy ở đây nè:
Cho n thuộc N .CMR: 11^n+2+12^2n+1 chia hết cho 133? - Yahoo Hỏi & Đáp