1/1.2 + 1/2.3 + ...... + 1/49.50
= 1/1 - 1/2 + 1/2 - - .... - 1/50 = 1 - 1/50 = 49/50
1/1.2 + 1/2.3 + ...... + 1/49.50
= 1/1 - 1/2 + 1/2 - - .... - 1/50 = 1 - 1/50 = 49/50
cmr A=1/1.2+1/3.4+1/5.6+.......+1/49.50=1/26+1/27+........+1/50
CMR: 1/1.2+1/3.4+1/5.6+....+1/49.50+1/26=1/27=....=1/50
cmr :
1/1.2 + 1/3.4+1/5.6+...+1/49.50 = 1/26+1/27+1/28+...+1/50
a) A = 1/1.2+ 1/3.4+ 1/5.6+...+ 1/99.100
CMR: 7/12<A< 5/6
b) CMR: 1/1.2+ 1/3.4+ 1/5.6+...+1/49.50 = 1/26+ 1/27+ 1/28+...+1/50
Chứng Minh Rằng:
\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}\)
Cho A = \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
CMR: A = \(\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{49}+\frac{1}{50}\)
1, CMR: \(\frac{7}{12}<\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{97.98}+\frac{1}{99.100}<\frac{5}{6}\)
2, CMR: \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{47.48}+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{49}+\frac{1}{50}\)
Chứng minh 1/(1.2)+1/(3.4)+........+1/(49.50)=1/26+1/27+..........+1/50
Chứng minh 1/1.2 + 1/3.4 +1/5.6 +...... + 1/49.50 =1/26 + 1/27 + ... +1/50