Ta sẽ biến đổi vế phải:
\(a^3+b^3+3ab\left(a+b\right)\)
\(=a^3+3a^2.b+3ab^2+b^3+3a^{2b}+3ab^2\)
\(=a^3+b^3\)
Vậy VT = VP đẳng thức được chứng minh
Ta sẽ biến đổi vế phải:
\(a^3+b^3+3ab\left(a+b\right)\)
\(=a^3+3a^2.b+3ab^2+b^3+3a^{2b}+3ab^2\)
\(=a^3+b^3\)
Vậy VT = VP đẳng thức được chứng minh
Chứng minh
\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Chứng minh rằng:
a)\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
b)\(\left(a-b\right)^3+3ab\left(a-b\right)=a^3-b^3\)
c)\(\left(a+b\right)^2-\left(a-b\right)^2=4ab\)
chung minh
\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(a^3-b^3=\left(a-b\right)^3+3ab\left(a-b\right)\)
C/minh: \(\left(a-b\right)^3=a^3-b^3-3ab\left(a-b\right)\)
Chứng minh
\(^{a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)}\)
Chứng minh
\(\left(a+b\right)^3=\left(a-b\right)\left(a^2+ab+b^2\right)-3ab\left(a-b\right)\)
chứng minh
\(a^3-b^3=\left(a-b\right)^3+3ab\left(a-b\right)\)
\(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left[\left(a+b\right)+c\right]^3-a^3-b^3-c^3\)
\(=\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3-a^3-b^3-c^3\)
\(=a^3+3a^2b+3ab^2+b^3+3c\left(a^2+2ab+b^2\right)+3ac^2+3bc^2-a^3-b^3\)
\(=3a^2b+3ab^2+3a^2c+6abc+3b^2c+3ac^2+3bc^2\)
\(=3\left(a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+2abc\right)\)
\(=3\left[\left(a^2b+ab^2\right)+\left(a^2c+abc\right)+\left(ac^2+bc^2\right)+\left(b^2c+abc\right)\right]\)
\(=3\left[ab\left(a+b\right)+ac\left(a+b\right)+c^2\left(a+b\right)+bc\left(a+b\right)\right]\)
\(=3\left(a+b\right)\left(ab+ac+c^2+bc\right)\)
\(=3\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]\)
\(=3\left(a+b\right)\left(b+c\right)\left(c+b\right)\)
CMR
a) \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
b)\(a^3-b^3=\left(a-b\right)^3+3ab\left(a-b\right)\)
Giúp mk vs mk đg cần gấp