\(Chứng\)\(minh:\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{2n-1}{2n}< \frac{2}{\sqrt{2n+1}}\)
Chứng minh rằng: \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{\left(2n-1\right)}{2n}\le\frac{1}{\sqrt{3n+1}}\) ( n là số nguyên dương)
1) \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{\left(2n-1\right)}{2n}\le\frac{1}{\sqrt{3n+1}}\)( n là số nguyên dương)
Chứng minh bất đẳng thức
Với n thuộc N, chứng minh \(\sqrt{n+1}-\sqrt{n}>\frac{1}{2\sqrt{n+1}}\)
Sử dụng kết quả trên, chứng minh: \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2012}}< 2.\sqrt{2012}\)
Chứng minh \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{2n-1}{2n}< \frac{1}{\sqrt{2n+1}}\)với n thuộc N*
Chứng minh :
\(\frac{2n-1}{2n}\le\sqrt{\frac{3n-2}{3n+1}}\). Suy ra : \(\frac{1}{2}\times\frac{3}{4}\times...\times\frac{2n-1}{2n}\le\frac{1}{\sqrt{3n+1}}\)
chứng minh : \(\frac{1}{2}.\frac{3}{4}...\frac{2n-1}{2n}< \frac{1}{\sqrt{2n+1}}\)
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...........\frac{2n-1}{2n}\)\(n\in N,n\ge2\)
C/m A<\(\frac{1}{\sqrt{3n+1}}\)
Chứng minh rằng:
\(\frac{1}{4+1^4}+\frac{3}{4+3^4}+\frac{5}{4+5^4}+....+\frac{2n-1}{4+\left(2n-1\right)^4}=\frac{n^2}{4n^2+1}\)
Rút gọn:
A=\(\frac{4+\sqrt{3}}{\sqrt{1}+\sqrt{3}}+\frac{6+\sqrt{8}}{\sqrt{3}+\sqrt{5}}+...+\frac{2n+\sqrt{n^2-1}}{\sqrt{n-1}+\sqrt{n+1}}+...+\frac{240+\sqrt{14399}}{\sqrt{119}+\sqrt{121}}\)