Chứng minh rằng:
1996×1991×1989-1993×1988×1995=2005×2010×2003-2007×2002×2009
a,x-10/1994+x-8/1996+x-6/1998+x-4/2000+x-2/2002=x-2002/2+x-2000/4+x-1998/6+x-1996/8+x-1994/10
b,x-1991/9+x-1993/7+x-1995/5+x-1997/3+x-1999/1=x-9/1991+x-7/1993+x-5/1995+x-3/1997+x-1/1999
c,x-1/13-2x-13/15=3x-15/27-4x-27/29
\(\dfrac{x+1}{1998}\)+ \(\dfrac{x+2}{1997}\)=\(\dfrac{x+3}{1996}\)+\(\dfrac{x+4}{1995}\)
1/(x+2001)(x+2002)+1/(x+2002)(x+2003)+..........+1/(x+2006)(x+2007) =7/8
x+1/2009+x+3/2007=x+5/2005+x+7/1993
1/(x+2000)(x+2001) + 1/(x+2001)(x+2002) +1/(x+2002)(x+2003) +........+ 1/(x+2006)(x+2007)= 7/8
Giải phương trình sau
\(\frac{x+24}{1996}+\frac{x+25}{1995}+\frac{x+26}{1994}+\frac{x+27}{1993}=0\)
\(\frac{x+22}{1996}+\frac{x+23}{1995}+\frac{x+24}{1994}+\frac{x+25}{1993}=4\)
Ai giups mik v
Giải các phương trình:
\(\dfrac{x+24}{1996}+\dfrac{x+25}{1995}+\dfrac{x+26}{1994}+\dfrac{x+27}{1993}+\dfrac{x+2036}{4}=0\)