Thử bằng máy tính lại đi hình như sai đề
Thử bằng máy tính lại đi hình như sai đề
\(y=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}với\left(1\le x\le2\right)\)
CMR y là hằng số
1. Cho các số \(a,b,c\)dương thỏa mãn \(ab+ac+bc=1\)
CMR : P= \(\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\le\frac{9}{4}\)
2. Cho x,y,z là các số thực dương thỏa mãn xyz=1
Tìm GTLN của biểu thức \(A=\frac{1}{x^3+y^3+1}+\frac{1}{z^3+y^3+1}+\frac{1}{z^3+x^3+1}\)
3. Giải pt
a) \(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
b)\(CM:\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)
c) Cho đường thẳng y= (m-2)x + 2 (d). CMR đg thẳng (d) luôn đi qua 1 điểm cố định với mọi giá trị của m
4. Cho x,y là các số dương
a) CM \(\frac{x}{y}+\frac{y}{x}\ge2\)
b) Tìm Min M = \(\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+y^2}\)
a) Tính giá trị của biểu thức: \(A=2x^2+3x^2-4x+2\)
với \(x=\sqrt{2+\sqrt{\frac{5+\sqrt{5}}{2}}}+\sqrt{2-\sqrt{\frac{5+\sqrt{5}}{2}}}-\sqrt{3-\sqrt{5}}-1\)
b) Cho x, y thỏa mãn:
\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{y+2014}+\sqrt{2015-y}-\sqrt{2014-y}\)
CM: x = y
Cho A = \(\left(\frac{x-y}{x-\sqrt{y}}-\frac{x\sqrt{x}-y\sqrt{y}}{x-y}\right):\left(\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right)\)
a) Rút gọn A
b) CM: \(A\ge0\)
1.giải phương trình
\(x^2\)-13x+50=4\(\sqrt{x-3}\)
2. a) cm : A= \(\sqrt{2012^2+2012^2\times2013^2+2013^2}\)là 1 số tự nhiên
b) cm : B=\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2010}}\)>86
3. tìm số nguyên x,y thoa mãn :
a) y=\(\sqrt{x^2+4x+5}\)
b) \(x\left(\sqrt{y-1}\right)+y\left(\sqrt{x-1}\right)=xy\)
1.a ) so sánh 1, 2 số a, b với : \(a=\sqrt{3}+\sqrt{7};b=\sqrt{19}\)
1.b) cho 2 biểu thức :
\(A=\frac{\left(\sqrt{x}+\sqrt{y}\right)^2-4\sqrt{xy}}{\sqrt{x}-\sqrt{y}};B=\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}\)
với x >0 ; y>0 ; x khác y
tính A, B
a) Cho (x+\(\sqrt{x^2+2011}\)).(y+\(\sqrt{y^2+2011}\))=2011.Tính x+y
b) Với a,b,c là các số dương thỏa mãn điều kiện a+b+c=2 .Tìm giá trị lớn nhất của biểu thức Q=\(\sqrt{2a+bc}+\sqrt{2b+ca}+\sqrt{2c+ab}\)
a) cho x,y là các số không âm
CM: \(x^2+y^2+1>x\sqrt{y^2+1}+y\sqrt{x^2+1}.\)
b) cho x,y,z là các số thực dương thỏa mãn điều kiện \(x+y+z=\sqrt{xyz}\)
CM:\(xy+yz+xz\ge9\left(x+y+z\right).\)
Cho A = \(\dfrac{x+y-2\sqrt{xy}}{x-y}\left(x\ge0;y\ge0;x\ne y\right)\)
1) Chứng minh A = \(\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
2) Tính A với x = \(3+2\sqrt{2}\) và y = \(3-2\sqrt{2}\)
LÀM CHI TIẾT GIÚP MK NHÉ!