Ta có: \(a\ge b\Rightarrow1+b^2\le1+a^2\)
\(\Rightarrow\frac{1}{1+b^2}\ge\frac{1}{1+a^2}\Rightarrow\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{1}{1+a^2}+\frac{1}{1+a^2}\)
\(\Leftrightarrow\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+a^2}\)
Ta có: \(a\ge b\Rightarrow1+b^2\le1+a^2\)
\(\Rightarrow\frac{1}{1+b^2}\ge\frac{1}{1+a^2}\Rightarrow\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{1}{1+a^2}+\frac{1}{1+a^2}\)
\(\Leftrightarrow\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+a^2}\)
Cho \(a\ge1,b\ge1\)
Cm: \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)
giúp cái CM BĐT; \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{ab+1}\)với \(ab\ge1\)
CMR
\(1,\frac{a^2}{b^2}+\frac{b^2}{a^2}\ge\frac{a}{b}+\frac{b}{a}\)
\(2,Với
a,b\ge1.CMR
:
a\sqrt{b-1}+b\sqrt{a-1}\le ab
\)
\(3,
a^2+b^2+c^2+d^2\ge\left(a+b\right)\left(c+d\right)\)
Cho \(a\ge1,b\ge1,c\ge1\) CMR
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge\frac{3}{abc+1}\)
\(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\ge3\sqrt[6]{abc}=3\)
Ta có \(\frac{a}{a+2}+\frac{b}{b+2}+\frac{c}{c+2}\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{a+b+c+6}=\frac{a+b+c+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)}{a+b+c+6}\ge1\)
=> \(\frac{a}{a+2}+\frac{b}{b+2}+\frac{c}{c+2}\ge1\)
=> \(\left(\frac{1}{2}-\frac{1}{a+2}\right)+\left(\frac{1}{2}-\frac{1}{b+1}\right)+\left(\frac{1}{2}-\frac{1}{c+1}\right)\ge\frac{1}{2}\)
=> \(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\le1\)(ĐPCM)
Cho a,b dương thỏa mãn \(ab\ge1\) chứng minh\(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)
BĐT nhé ae: Với các ẩn dương nhé
1. abc=1. CM \(sigma\left(\frac{1}{2a^3+b^3+c^3+2}\right)\le\frac{1}{2}\)
2.\(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)CM \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
cho a,b\(\ge\)1
cm: \(\frac{1}{\left(1+a\right)^2}+\frac{1}{\left(1+b\right)^2}\ge\frac{2}{1+ab}\)
cho số dương a,b,c thỏa mãn \(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\ge1\)
cm:\(a+b+c\ge ab+bc+ca\)