Đặt \(a=\sqrt[3]{3+\sqrt{9+\frac{125}{27}}},b=\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}\to a^3-b^3=6,ab=\sqrt[3]{\frac{125}{27}}=\frac{5}{3}.\)
Từ đây với \(S=a-b\to S^3=a^3-3ab\left(a-b\right)-b^3=6-5S\to S^3+5S-6=0\)
Suy ra \(\left(S-1\right)\left(S^2+S+6\right)=0\to S=1\to S\) là số nguyên.