\(Cho\)a , b , c là các số lẻ . Chứng minh rằng :
\(ƯCLN\left(a,b,c\right)=\left(\frac{a+b}{2},\frac{b+c}{2},\frac{c+a}{2}\right)\)
Cho \(a,b,c\) là các số lẻ. Chứng minh rằng:
\(ƯCLN\left(a;b;c\right)=ƯCLN\left(\frac{a+b}{2};\frac{b+c}{2};\frac{c+a}{2}\right)\)
Cho a, b, c là 3 số lẻ. CMR: ƯCLN(a; b) = ƯCLN(\(\frac{a+b}{2};\frac{b+c}{2};\frac{c+a}{2}\))
Cho a, b, c là 3 số lẻ. CMR: ƯCLN(a; b) = ƯCLN(\(\frac{a+b}{2};\frac{b+c}{2};\frac{c+a}{2}\))
Tìm các số tự nhiên a,b,c biết
\(\frac{1}{a^2.\left(a^2+b^2\right)}+\frac{1}{\left(a^2+b^2\right)\left(a^2+b^2+c^2\right)}+\frac{1}{a^2+\left(a^2+b^2+c^2\right)}=1\)
cho a,b,c là các số lẻ.CMR:
(a,b,c)=\(\left(\frac{a+b}{2},\frac{b+c}{2},\frac{c+a}{2}\right)\)
Tìm các số tự nhiên a,b,c biết:
\(\frac{1}{a^2\left(a^2+b^2\right)}+\frac{1}{\left(a^2+b^2\right)\left(a^2+b^2+c^2\right)}+\frac{1}{a^2\left(a^2+b^2+c^2\right)}=1\)
các bạn giúp mk bài trên nha!!
Cho \(\frac{a}{b}\)=\(\frac{b}{c}\)=\(\frac{c}{a}\).Tính:
a)\(\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2}\)
b)\(\frac{a^3+b^3+c^3}{\left(a+b+c\right)^3}\)
c)\(\frac{a+b}{b+c}\)-3= \(\frac{2a+b}{b+c}\)
Giúp mình với:
1. Cho 2 số nguyên a và b ( b \(\ne\)0 ). Khẳng định nào dưới đây là đúng ?
A. \(\frac{-\left(-a\right)}{-b}=\frac{-a}{-b}\) B. \(\frac{-a}{-b}=\frac{-a}{-\left(-b\right)}\) C. \(\frac{-\left(-a\right)}{-b}=\frac{a}{b}\) D. \(\frac{-\left(-a\right)}{-\left(-b\right)}=\frac{a}{b}\)
2. Cho 2 phân số bằng nhau \(\frac{a}{b}=\frac{c}{d}\) (a,b,c,d \(\varepsilon\)Z; b,d \(\ne\)0). Chứng minh rằng \(\frac{a\pm b}{_{ }b}=\frac{c\pm d}{d}\)