`2x^2+5x+4=2(x^2+5/2x+2)=2(x^2+2.x. 5/4+25/16+7/16)`
`=2[(x+5/4)^2+7/16]`
`=2(x+5/4)^2+7/8`
Vì `2(x+5/4)^2 >= 0 AA x`
`=>2(x+5/4)^2+7/8 >= 7/8 > 0 AA x`
Vậy `2x^2+5x+4` luôn dương với mọi `x`
`2x^2 +5x+4`
`=2(x^2 +5/2x+2)`
`=2(x^2 +2. 5/4 x+ 25/16 -25/16+2)`
`=2[(x^2 +5/2x+25/16+7/16]`
`=2[(x+5/4)^2 +7/16]`
`=2(x+5/4)^2 +7/8`
Do `(x+5/4)^2 >=0AAx`
`=>2(x+5/4)^2 >=0`
`=>2(x+5/4)^2 +7/8>=7/8>0`
`=>2x^2 +5x+4>0(đpcm)`