\(\frac{2.\left(x+y\right)}{30}=\frac{5.\left(y+z\right)}{30}=\frac{3\left(x+z\right)}{30}\)
= \(\frac{x+y}{15}=\frac{y+z}{6}=\frac{x+z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x+y}{15}=\frac{y+z}{6}=\frac{x+z}{10}\)=\(\frac{x+z-y-z}{10-6}=\frac{x-y}{4}\)
\(\frac{x+y}{15}=\frac{y+z}{6}=\frac{x+z}{10}\)=\(\frac{x+y-x-z}{15-10}=\frac{y-z}{5}\)
---> dp cm